





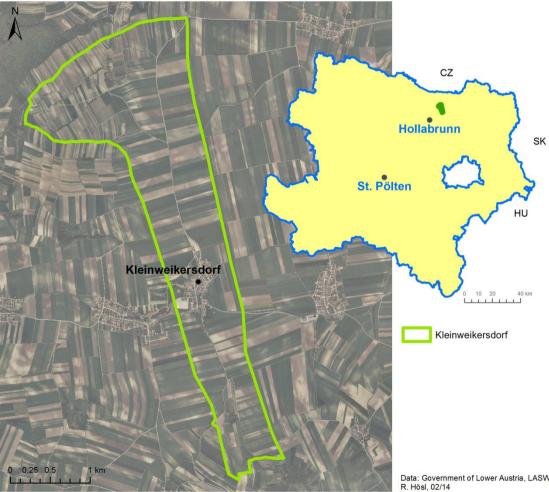


# SONDAR CZ-AT & ELSA international conference

Lednice, Czech Republic, 15. 5. 2014

### Soil Erosion Development

**Rosemarie Hösl** 


**Peter Strauss** 

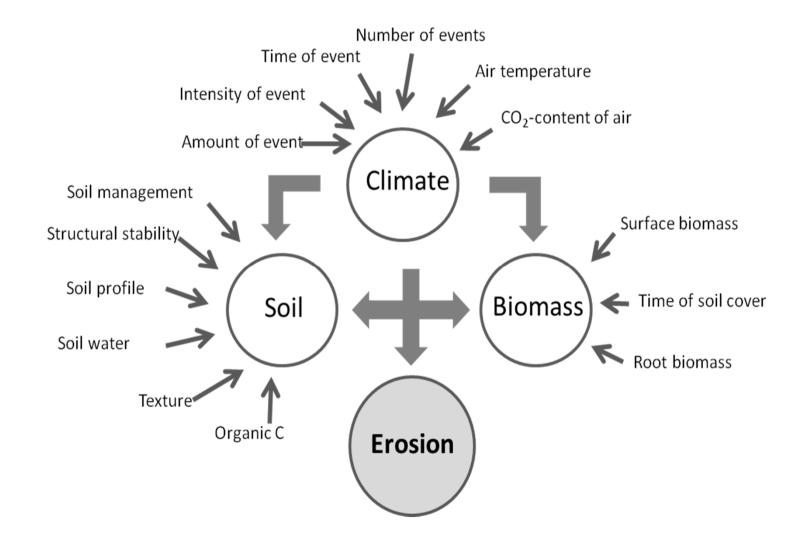


### Sondar CZ-AT

- Main aims:
  - Study land use changes and their impact on soil erosion in the study area Kleinweikersdorf (near CZ border)
  - Quantitative analyses of historical soil erosion development for the study area
  - Comparision with a czech study area

#### Study Site




- Mean annual precipitation 500 mm
- Mean annual temperature 8.8°C
- Main soil types Chernozems derived from Loess material
- Mean slope 7.2 %
- Intensive agricultural use

Data: Government of Lower Austria, LASWA



#### Land schafft Wasser

#### Soil Erosion Risk I



#### Land schafft Wasser

# Soil Erosion Risk II

$$A = R * K * LS * C * P$$

#### Land Structure

- 1945: aerial photographs from flights of Alleys
- From 1966 on: decadic available aerial photographs
- Digitalisation

#### Land Use

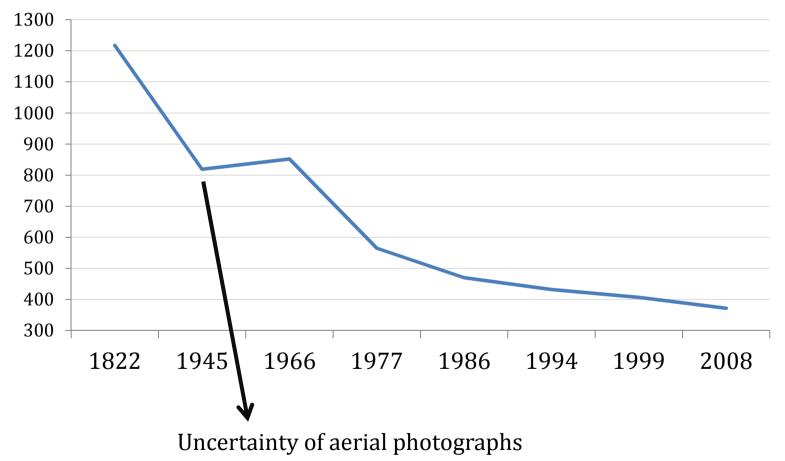
- From 1874 on: yearbooks from k&k monarchy (Ackerbauministerium),
- From 1949 on: statistical agricultural surveys



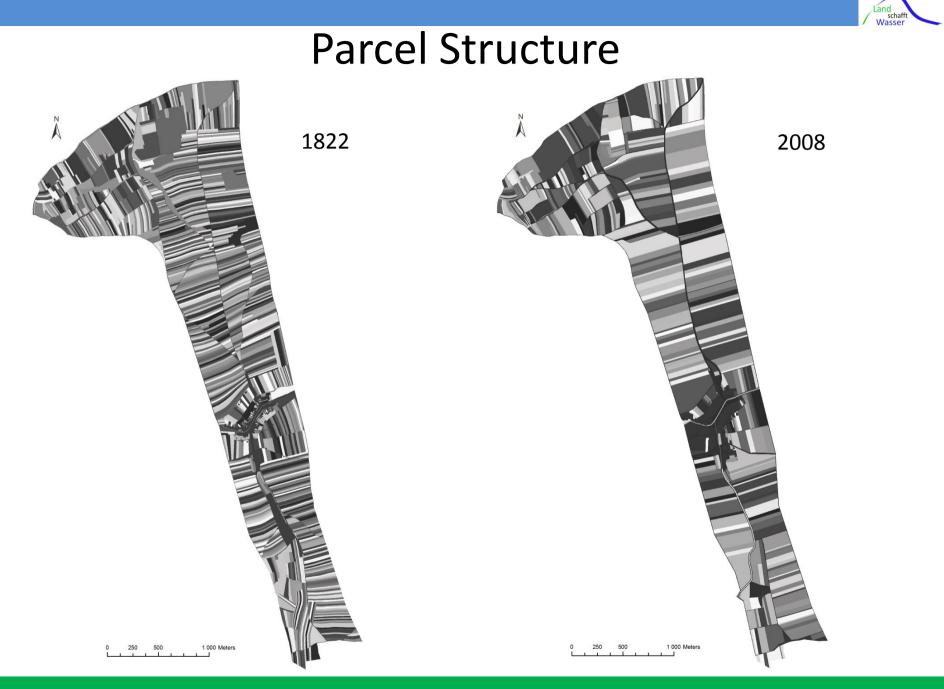
# Used data base

| Land Structure | Land Use  | Scale  | Note (data derived from)                                                                    |  |
|----------------|-----------|--------|---------------------------------------------------------------------------------------------|--|
| 1822           | 1874-1877 | 1:2880 | Franziszäic Cadastre, K&K agricultural annual book                                          |  |
| 1945           | 1949      | 1 m    | Historical aerial photos from World War II, black/white<br>Agricultural land use statistics |  |
| 1966           | 1969      | 0.5 m  | m black/white, Agricultural land use statistics                                             |  |
| 1986           | 1990      | 0.5 m  | black/white, Agricultural land use statistics                                               |  |
| 2008           | 2008      | 0.25 m | true colours, Agricultural land use statistics                                              |  |

Additional: Digital cadastral map Historical literature




#### Land schaf Wasser Land use I 60 Grassland Root crops Summer crops Winter crops Wine 50 40 % 30 20 10 0 1874 1949 1969 1979 1990 2004 2008

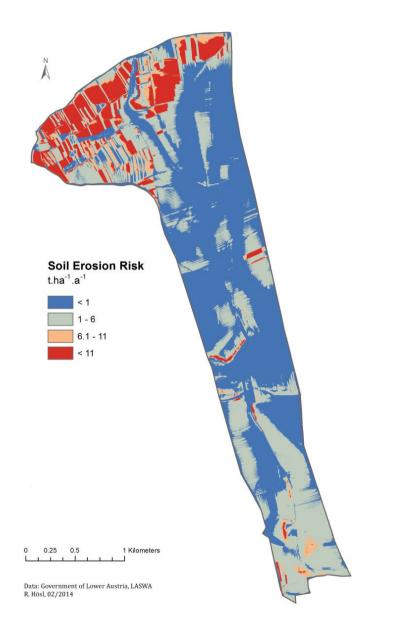

Derived from k&k annual yearbook and land use statistics (www.statistik.at) Crops were classified from 38 to 5 categories, problems with comparability, Data from 1874 not nearly as detailed as 2008, other categories....

#### Land structure

#### **Number of Parcels**

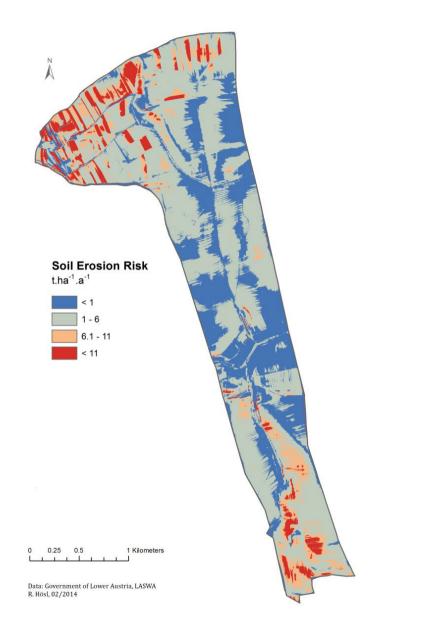


Land schaff Wasser



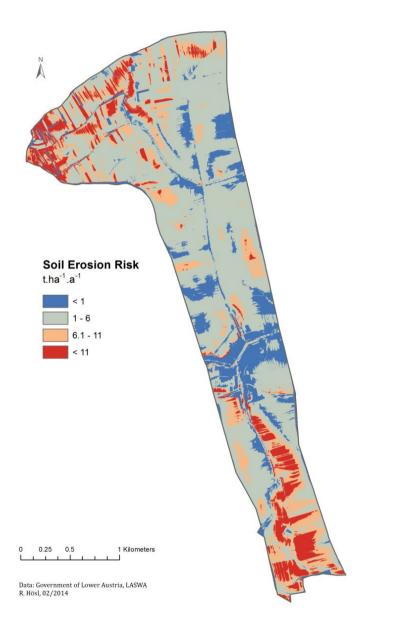



# C Factors


| Year | Land Use             | C Factor | Calculation<br>Method/Literature | → Three-Field Rotation                                           |  |
|------|----------------------|----------|----------------------------------|------------------------------------------------------------------|--|
| 1822 | Farmland             | 0.07     | Bobb                             |                                                                  |  |
|      | Vineyard             | 0.46     | Auerswald & Schwab, 1999         |                                                                  |  |
|      | Grassland/Waste Land | 0.01     | Bargiel et al., 2013             |                                                                  |  |
| 1945 | Farmland             | 0.13     | Bobb                             |                                                                  |  |
|      | Vineyard             | 0.46     | Auerswald & Schwab, 1999         |                                                                  |  |
|      | Grassland/Waste Land | 0.01     | Bargiel et al., 2013             |                                                                  |  |
| 1969 | Farmland             | 0.1      | Bobb                             |                                                                  |  |
|      | Vineyard             | 0.46     | Auerswald & Schwab, 1999         |                                                                  |  |
|      | Grassland/Waste Land | 0.01     | Bargiel et al., 2013             |                                                                  |  |
| 1990 | Farmland             | 0.13     | Bobb                             |                                                                  |  |
|      | Vineyard             | 0.46     | Auerswald & Schwab, 1999         |                                                                  |  |
|      | Grassland/Waste Land | 0.01     | Bargiel et al., 2013             |                                                                  |  |
| 2008 | Farmland             | 0.15     | Bobb                             |                                                                  |  |
|      | Vineyard             | 0.1      | Auerswald & Schwab, 1999         | <ul> <li>Conservation measure</li> <li>in vineyards –</li> </ul> |  |
|      | Grassland/Waste Land | 0.01     | Bargiel et al., 2013             |                                                                  |  |
|      |                      |          |                                  | greening over whole<br>year                                      |  |

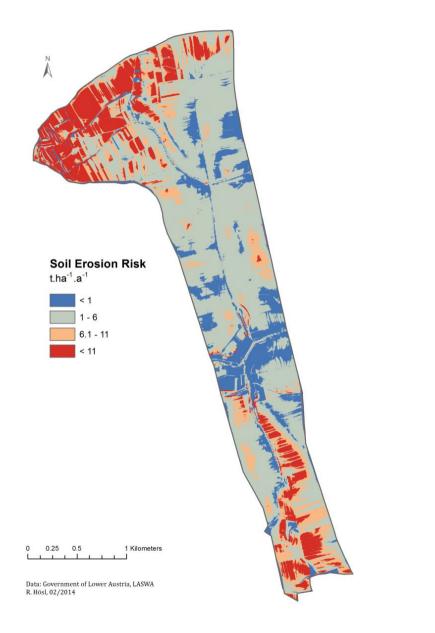
- Soil erosion risk
  - Mainly within vineyards (northern part)
  - Low erosion rates for farmland > three field crop rotation with one year bare land




Land

- Soil erosion risk
  - Vineyard area decreasing
  - No year with bare land within crop rotation any more



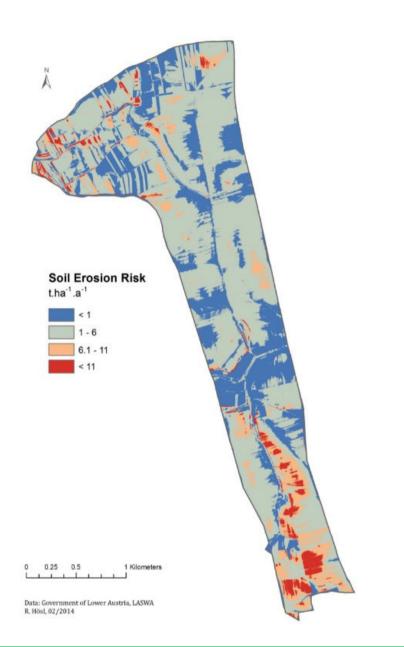

Land scha Wasse

- Soil erosion risk
  - Intensification of crop rotation



Land schaff Wasser

- Soil erosion risk
  - Intensification of crop rotation
  - Vineyard area increases again




Land schaf Wasser

#### Land schafft Wasser

### 2008

- Soil erosion risk
  - Erosion control measures in vineyards – greening between rows over the whole year
  - Low contribution of farmers for erosion control measures on farmland





#### Conclusions...

- One: Continuous change in field sizes from 1822 – 2008
- Second: Continuous decrease of grassland
- Third: Wine growing area
- Fourth: Management of vineyards



#### Measures to combat soil erosion

#### Vineyards

- The greening of vineyards is an effective erosion control measure which is already implemented at Kleinweikersdorf, this must be an ongoing process.
- Cultivating wine across the slope, especially for new viticulture.

#### Farmland

- No till. Minimum of soil disturbance, (organic) residues remain on the field and may protect soil from erosion processes.
- **Mulching**. Sufficient soil cover from living or dead mulch residues of major importance.
- **Grassed Waterways**. Cultivation of thalweg situations with permanent vegetation.
- Strip cultivation. Parting long slopes by grass strips reduces slope length, especially recommended for long steep slopes with monocultures.
- Strip tillage. Soil cultivating with non-inversion tillage techniques, conserves soil moisture, crop residues remain on the field to protect soil against erosion.
- Catch crops. By cultivating catch crops in late summer / early autumn soil is covered during autumn and winter and prevents soil from erosion during this period.









# Thank you!

Lednice, Czech Republic, 15. 5. 2014

Soil Erosion Development

peter.strauss@baw.at