

Risk of sediment inflow into residential areas and soil erosion measures implementation in the Czech Republic

Josef Krása, Tomáš Dostál, Petr Kavka,

DEPARTMENT OF IRRIGATION, DRAINAGE AND LANDSCAPE ENGINEERING FACULTY OF CIVIL ENGINEERING, CZECH TECHNICAL UNIVERSITY IN PRAGUE

josef.krasa@fsv.cvut.cz

Křídlůvky

SOIL EROSION RESEARCH AT CTU IN PRAGUE

Jaroslavice

397

Cesko sterreich

Slup

MOTIVATION IS IN CZECH LANDSCAPE HISTORY

Google

Cesko Österreici Change over time – large and hilly parcels in Czech highlands

Analyses of spatial extent of rill erosion.

Manual rill digitizing.

Volumetric analyses.

Báčová, M. & Krása, J., 2016. Application of historical and recent aerial imagery in monitoring water erosion occurrences in Czech highlands. *Soil and Water Research*, 11(No. 4), pp.267–276, DOI 10.17221/178/2015-SWR

VOLUMETRIC ANALYSES OF RILL EROSION

VOLUMETRIC ANALYSES OF RILL EROSION

Using SfM

- Photomodeller Scanner,
- Agisoft Photoscan.

Handheld or UAV based picture taking.

a) Original surface

-0.055

Different DSM detail for different UAV elevations

VOLUMETRIC ANALYSES OF RILL EROSION

Sediment transported into the pond

We model continuously, but how much can be transported during a single event?

UAV volumetric study 2013

12 ha watershed/field April 27 - rainstorm Seedbed condition 2000 m³ was in move at single field, 1.7 cm in depth**"USLE" language** \rightarrow 250 t/haTolerable soil loss \rightarrow 4 t/ha/year

Intensification of Agriculture → Soil Erosion The model estimates may be heavily under/over estimated

Beside USLE approach, **nationwide soil erosion monitoring** was started by VÚMOP and SPÚ, filled in by Land Authority offices

Problems of the database:

- no actual volumes (just estimated erosion intensity)
- partly coupled with rainfalls

WEB application

Místní šetřeni

Datum:

Účastníci:

Bylavka

PÚ - ing. Josef Jakeš (ředitel), E-mail: josef.jakes@mze.cz, Tel: 380301530 PÚ - ing. Magdaléna Šedivá (referentka), E-mail: magdalena.sediva@mze.cz, Tel: 🛐

OÚ / MěÚ - Milan Štindl (starosta), E-mail: starosta@zlatakoruna.cz, Tel: 🛐 380 743 119

30.7.2012, 11:00

301 543

/Itava

Charakteristika události

Datum:	28.7.2012, 17:00 až 28.7.2012, 19:00
Тур:	eroze vodní - plošná

Popis: rodinného domu v Rájvě ke škotě. Voda strhla téměř celý jízdní pruh na komunikaci spojující Český Krumlov a České Budějovice Srážkové

Český Krumlov-Přísečná, celkový úhrn: 99 mm

K DETAIL události č. 112 hlášené dne 2.8.2012

Vzniklé škody

Na plodinách:	
žádné	
Na komunikacích:	
škoda na komunikaci - stržen téměř celý jízdní p	pruh
Na stavbách, studních a ostatní infrastruktuře	e:
škoda v zahradě rodinného domu, poničení zídl	ky, plot
Na vodních útvarech (vodní toky a plochy):	
ne	174

Lokalizace

Místní název:	Rájov
Celková výměra (odhad):	
Katastrální území:	Rájov
Okres:	Český Krumlov

Fotografie

Po přívalovém deště s velkým úhrnem srážek (cca 60 mm) od 17:00 do 19:00 hodin a pozdější další četné srážky - došlo vlivem silného proudu vody, který steki z přilehlých polí přes lesík a

How to deal with?

How to deal with?

Option 1: Cross compliance policy and other policies of EU Option 2: Landscape structure change through Land Consolidation Projects

Cross compliance \rightarrow GAEC standards

In Czech – soil erosion risk on farmland defined by USLE

Basic standard in soil erosion control and soil conservation in the CR:

Map of soil erosion hazard – powered by Ministry of Agriculture of the CR

Method: USLE/GIS – standard methodology, data catalogues Data: resolution 10 x 10 m, maps 1:10 000, for each single field, fully distributed

Spatialy based on:

LPIS system (Land Parcel Identification System)

Cross compliance \rightarrow GAEC standards

In Czech – soil erosion risk on farmland defined by USLE

Basic standard in soil erosion control and soil conservation in the CR:

Map of soil erosion hazard – powered by Ministry of Agriculture of the CR

For state subsidy policy – map of potential soil loss cathegorized into three classes:

NEO – no soil erosion hazard MEO – moderate soil erosion hazard SEO – high soil erosion hazard

Catalogue with list appropriate crops, technologies and measures, applicable at individual parcels or its parts

For state subsidy policy – map of potential soil loss categorized into three classes:

NEO – no soil erosion hazard MEO – moderate soil erosion hazard SEO – high soil erosion hazard

Catalogue with **list appropriate crops, technologies and measures**, applicable at individual parcels or its parts

Or – supporting WEB APP erosion calculator may be used:

Vítejte v Protierozní kalkulačce, internetové aplikaci pro podporu rozhodování v oblasti protierozní ochrany půdy. Aplikace poskytuje uživatelům informace o míře erozní ohroženosti hodnocených lokalit (DPB v rámci LPIS, erozní parcely či libovolné EUC), poskytuje informace o ochranném účinku modelových osevních postupů s možností vytvářet a hodnotit vlastní osevní postupy, po aplikaci osevního postupu na lokalitu vyhodnocuje potřebu přijmout konkrétní doplňující protierozní opatření a vyhodnocuje jeho účinnost, vyhodnocuje dopad bilance organické hmoty na erodovatelnost půdy.

> Aplikace Protierozní kalkulačka byla vyvinuta pro Ministerstvo zemědělství a Ministerstvo životního prostředí.

Ministerstvo životního prostředí

For state subsidy policy – map of potential soil loss categorized into three classes:

NEO – no soil erosion hazard MEO – moderate soil erosion hazard SEO – high soil erosion hazard

But still – the limits are definitely not sharp enough for serious protection

Obr. 2.1 Erozní ohroženost půd ČR podle GAEC 2 a podle doporučení VÚMOP v.v.i.

For state subsidy policy – map of potential soil loss categorized into three classes:

NEO – no soil erosion hazard MEO – moderate soil erosion hazard SEO – high soil erosion hazard

But still - the limits are definitely not sharp enough for serious protection

- According legislation USLE obligatory
- ✓ Many designers still using 1D manual approach
- Valid methodology already accentuate 2D GIS approach, a practice it uses more and more, but it greatly depends on the quality of input data and the correct selection of a computing algorithm.

- According legislation USLE obligatory
- Many designers still using 1D manual approach
- Valid methodology already accentuate 2D GIS approach, a practice it uses more and more, but it greatly depends on the quality of input data and the correct selection of a computing algorithm.

✓ According legislation – USLE obligatory

Preparation of other USLE factors:

- import from SHP, conversion of vectors to grid, reclassification according methodology based on official tables. R-factor 400 N/h/year applied

New model Atlas EROZE developed in 2014

New model Atlas EROZE developed in 2014

model Atlas EROZE – technical measures

model Atlas EROZE – automated inputs + outputs

Vzorová úloha č. 3.: Výpočet erozní ohroženosti s externími vstupními daty

http://www.atlasltd.cz/atlas-eroze.html

model Atlas EROZE – automated inputs + outputs

Protokol výsledků modelu Atlas EROZE. © 2014 Atlas s.r.o., ČVUT v Praze, VÚMOP, v.v.i,

Model byl vytvořen v rámci projektu TA ČR TA02020647.

		Souhrı	nná tabulka	ı výsledků	pro všecł	nny erozn	ě uzavřené	celky						
	Placha	Nabadaac	I	ntervaly ero	zního smyvu	u [t.ha ⁻¹ .rok ⁻¹	¹]		Brůměrný	Přípustný	\checkmark	*.xls p	repare	d for d
EUC	výpočtu	eno	0 - 4	4 - 8	8 - 12	12 - 20	20 - 30	> 30	smyv	smyv		•	•	
	[m ²]	[m ²]	Dílčí plochy v	/ rozmezí int	ervalu hodn	not erozního	smyvu [m²]		[t.ha ⁻¹ .rok ⁻¹]	[t.ha ⁻¹ .rok ⁻¹]				
Σ	1 450 900	30 075	933 075	299 000	103 425	62 025	18 250	5 050	3.8	4.0				
EUC 1	8 475	0	8 475	0	0	0	0	0	0.1	4.0				
EUC 2	65 075	325	64 750	0	0									
EUC 3	143 025	3 375	39 625	44 250	31 575			Protokol v	ýsledků mode	lu Atlas EROZI	E. © 2014	Atlas s.r.o., Ò	VUT v Praze, V	√ÚMOP, v.v.
EUC 4	9 200	0	9 200	0	0				Model k	oyl vytvořen v	rámci pro	jektu TA ČR TA	02020647.	
EUC 5	162 600	600	162 000	0	0									
EUC 6	412 950	13 675	276 600	108 875	11 150		Gra	afický pře	ehled rozsal	hu dílčích p	loch v rá	ámci EUC dlo	e míry erozr	ιího ohrož
EUC 7	87 300	1 950	85 350	0	0					Intorvaly o	rozního sn	ovau [t bo ⁻¹ rol	,-1 ₁	
EUC 8	109 300	0	72 500	26 700	7 650					intervaly e		nyvu [t.na .nor		
EUC 9	452 975	10 150	214 575	119 175	53 050	EU	С	Nehod	In. 0-4	4 - 8	8 - 12	12 - 20	20 - 30	> 30
						_		[%]	Dílčí ploc	hy v rozmezí i	ntervalu h	odnot erozníh	o smyvu [%]	
							0%	10%	20% 3	0% /09	V/ 5	<u>0%</u> 60%	70%	80%

Applied standards of output protocols

*.xls prepared for direct print

	Grafický přehled rozsahu dílčích ploch v rámci EUC dle míry erozního ohrožení:																		
		Intervaly erozního smyvu [t.ha ⁻¹ .rok ⁻¹]																	
EUC				Nehodn		0 - 4		4 - 8	:	8 -	12	12 -	20	20 -	30	> 30			
				[%]	D	ílčí ploc	hy v r	rozme	ezí inte	ervalu	ı hodn	ot ero	zního	smyvu	ı [%]				
0	%		10%		20%	3	0%		40%		50%		60%		70%	80	%	90%	100%
UC 1			-		-			_	-										
UC 2																			
UC 3																			
UC 4																			
UC 5																			
UC 6																			
JC 7																			
UC 8																			
UC 9																			

Numerical, statistical and graphical outputs

model Atlas EROZE – automated inputs + outputs

Postzované území: ELIC 25 Akce

Zora covatel

Na	stavení mode	elu:	Vyjmutí placi	h	Sedim	entace	skli	an mensí n	eż	
Ro	zlišení						akı	imula ce vé	tsí neż	
	10		re		Výmal	ová eroze	akı	imula ce vé	tsínezi	
Souhrnné výsledky j	pro erozně uz	avřený ce	alek:							
Průmérný R-faktor		40			Celkov	vá plocha B	OUC		143 128) (m
Průmérný K-faktor		0.503776			Průmé	mýsklan	EUC		4.83	' [°]
Průmérný C-faktor		0.22			Plocha	a ob lastíb	ez eroze		0) (mʻ
Průmérný P-faktor		1			Plocha	avýmolné	eroze		0) (mʻ
Přípustný smyv		4	[t.ha ⁴ .rok ⁴]		Plocha	asediment	ace		0) (mʻ
Průměrný smyv		10.26	[t.ha ¹ .rok ¹]		Řesen	á plocha E	UC		143 000) (m [*]
Interval smyvu	plocha		překročení		096	2.0%	4.0%	6.0%	2.095	10.09
[t.ha".rok"]	[m²]	[% EUC]	[% EUC]			± 070	+0%	00%	0.0%	10.05
neřešeno	0	0%6	0%	neřešeno						
0-1	900	1%	1%	0-1	·					
1-2	3000	2%	3%	1-2	-					
2-3	8000	676	8%	2-3	-					
3-4	11 500	8%	16%	3-4		-				
4-5	10200	7%	23%	4-5		<u> </u>				
5-6	11600	8%	32%	5-6			† _			
6-7	8400	676	37%	6-7						
7-8	8 500	676	43%	7-8						
8-9	7800	5%	49%	8-9				1		
9-10	7000	5%	5486	9-10				+		
10-12	11200	8%6	6296	10-12	-			<u> </u>		
12-14	14800	10%6	72%	12-14	-				†	
14-16	12900	996	81%	14-16						
16-18	10200	7%	88%	16-18	-					
18-20	7700	5%6	93%	18-20	-					-
20-25	7300	5%	99%	20-25	-					-
25-30	1600	1%	100%	25-30						_
30-35	400	0%6	100%	30-35	-					_
35-40	0	0%6	100%6	35-40						_
×40		0%6	100%	>40	-					_

Dílčí plochy jednotlivých hodnot erozních faktorův rámci EUC plocha [m²] C-faktor plocha [m²] P-faktor plocha [m²] K-faktor 0.35 25000 0.220 143 000 1.00 143 000

				<< Plošn	é řešení smyv	u>> Nas	tavení			×
				_ Vstupn	parametry					
				R - fak	or (srážky):	40.0	DO 🕂	-		
Protokol výsle	dků modeli	u Atlas ER ()ZE. © 2014 Atla	ss.r.a., ČVU	í v Praze, VÚN	10P, v.v.i, 1	TA ČR TAO	2020647		
Nast	avení mod	lelu:	Vyjmutí plach	Se	dimentace	sklo	in mensí n	eż	re	
Rozli	is en í					aku	mulace vé	tsí nez	re	
	10		re	v	ímolová eroze	aku	mulace vé	tší než	re	
ouhrnné výsledky pr	o erozně u	zavřený ce	elek:							
Průmérný R-faktor		40		0	lková plocha B	UC OU		143 128	[m²]	
Průmérný K-faktor		0.503776		P	ůmémýsklon	EUC		4.87	["]	
Průmérný C-faktor		0.22		PI	ocha oblastí b	ez eroze		0	[m²]	
Průmérný P-faktor		1		PI	ocha výmolné	eroze		0	[m²]	
Přípustný smyv		4	[t.ha ⁴ .rok ⁴]	PI	ochasediment	ace		0	[m²]	
Průměrný smyv		10.25	[t.ha ⁺ .rok ⁺]	Ř	siená plocha E	UC		143 000	[m²]	
ntervalismyvu [tibə ^{-t} imu ⁴]	ploch [교 ⁴]	e (K cuc)	překročení (ak suc)	0	% 2.0%	4.0%	6 0%	8 0%	100%	
	0	[38 20 6] 086		neřešeno		i		1		
0.1	900	196	196	0-1						
1-2	3000	296	3%	1-2	-					
2-3	8000	6%	8%	2-3	_					
<u>_</u>	11,500	986	1696	3-4						
	- AC	ł		Cote	vírat souhrnný j vírat protokoly j ilt modely K a C ní výstupního ra:	orotokol (MS oro každý El faktoru do v stru : 20,1	5 Excel) UC (MS Exc /ýkresu 000	el)		

Sedimentace půdy:	Sklon menší než	10.00	0 + 0
Výmolová eroze:	Akumulace větší než	1.000	
vymolova crozer	Akumulace větší než	10000	00.000 ×
		Storno	ок

List of Best Management Practices

- Conservation tillage
- Strip tillage
- No tillage
- Grass buffer strips along water courses
- Mulching
- Fertilization with manure and compost
- Conservation crop rotation
- Precision agriculture
- Control of nutrients application
- Control of pesticides application
- Retention ditches
- Grassed waterways
- Sediment traps
- Hedges
- Infiltrating pools

Typical approach - SCS CN Method

Assumption: Ratio of outflow volume and rainfall volume is equal to ratio of volume of retained water to runoff and potential retention volume.

$$H_{0} = \frac{(H_{s} - 0.2.A)^{2}}{(H_{s} + 0.8.A)}$$
$$A = 25.4.\left(\frac{1000}{CN} - 10\right)$$
$$O_{pH} = 1000.P_{p}.H_{0}$$

Estimation of peak discharge

 assumes CN method results and is based on unit hydrograph method. Peak discharge; time of peak

$$q_{pH} = \frac{F.H_0}{5,3.T_L}$$

$$T_{L} = \frac{(3,28.l)^{0.8} \cdot (0,04.A+1)^{0.7}}{1900.Y^{0.5}}$$

 q_{pH} – unit peak discharge in $m^3.s^{-1}$ F – basin area in km^2

- H_0 head of runoff in *mm*
- T_L lag time in *hours*
- I hydraulic length of basin in m,
- Y average slope of basin in %
- A potential retention
- *CN* curve number
- TC time of concentration in hours

$$A = 25, 4. \left(\frac{1000}{CN} - 10\right)$$

$$TC = \frac{T_L}{0,6}$$

CN catalogue – high subjectivity in input values

		IPS	S II			IP	SI			IPS	S III	
Land Use		SCS So	oil Type	9		SCS So	oil Type	9		SCS S	oil Type	e
	Α	В	С	D	Α	В	С	D	Α	В	С	D
Paved parking lots, roofs, driveways	98	98	98	98	94	94	94	94	99	99	99	99
Dirt streets	72	82	87	89	53	66	73	76	86	92	95	96
Pasture, grassland, or range - Good	39	61	74	80	21	41	55	63	59	78	88	91
Meadow – contin. grass, no grazing	30	58	71	78	15	38	52	60	50	76	86	90
Brush - brush, weed, and grass - Good	30	48	65	73	15	29	45	54	50	68	82	87
Woods-grass combination - orchard - Good	32	58	72	79	16	38	53	62	52	76	86	91
Wood - good	30	55	70	77	15	35	51	59	50	74	85	89
Farmsteads - buildings, lanes, surrounding lots	59	74	82	86	39	55	66	72	77	88	92	94
Cultivated agr fallow - bare soil	77	86	91	94	59	72	80	85	89	94	97	98
Cultivated agr row – Contoured - Good	65	75	82	86	45	57	66	72	82	88	92	94
Cultivated agr small grain - Straight rows - Good	63	75	83	87	43	57	67	73	80	88	93	95
Cultivated agr small grain - Contoured Good	61	73	81	84	41	54	64	68	78	87	92	93
Cultivated agr close-seeded - Contoured Good	55	69	78	83	35	50	60	67	74	84	90	93

http://storm.fsv.cvut.cz/smoderp/

O programu Užitečné odkazy Ke stažení Kome	ntáře				2
SMOD	ERP /		KULTA STAVEBNÍ ské vysoké učení chnické v Praze tedra hydromeliorací		
SIMULAČNÍ MODEL POVRCHOVÉHO ODTO	KU A EROZNIHO PROCESU	🔁 ак	RAJINNÉHO INŽENÝRSTVÍ		
SMODERP 5.1 SMODERP 2013_1				Search	Q
O programu On Lis 27, 2011, by admin Vítejte na stránkách, které provozuje Katedra hyd fyzikálně odvozenému programu SMODERP kte	lromelirací a krajinného inženýrství a jsou věnovány rý slouží pro posuzování erozní ohroženosti a pro	Menu O program Historie r Vstupní p Užitečné o	u modelu parametry idkazy		
 Navrhování protierozních opatření. K 28. 8. 2013 byla uveřejněna nová verze mode předchozí verzi modelu 1002 a kterou je možné sta SMODERP je zkratkou celého názvu Simulační slouží pro posuzování a navrhování protierozních opatření protierozní protierozních opatření protierozních opatření protierozních o	V současné době jsou stránky v revizi, proto lze program a ma stáhnout pouze s přihlašovacím jménem a heslem, o které lze zažár Ing. Petra Kavku, Ph.D. SMODERP SMODERP je epizodní hydrologicko-erozní model sloužící p navrhování protierozních opatření a managementu vodního režimu měřítku pozemku či malého povodí. Celý název modelu je Simu povrchového ODtoku a Erozního Procesu.	nuál modelu dat e-mailem především k i v krajině na ulační Model	MENU: Program SMODER Manuál SMODERR Historie modelu SMODERP1D	<u>RP2D</u> ?2D	
jeho využitelnost v technické praxi, pro posouzí protierozních opatření. Dalším požadavkem na k rámci výuky předmětů, které nabízí Katedra hydror a ochranou a organizací povodí. Z těchto dvou pož parametry a použité vztahy, především z hlediska i Jedná se o fyzikálně založený model, který lze vyu	Aktuální verzí je SMODERP2D, který vychází z původní profilové ve tak, aby jej bylo možné použít za pomocí dostupných geodat. N softwarů, které umožňují snadnou přípravu vstupních vektorových a Program modelu SMODERP2D a manuál Ize najít na odkazech soubory. Popis instalace a spuštění modelu v GIS softwaru je popsár V současné době je vyvíjena integrace modelu SMODERP2D v pr model do budoucna doplněn o řešené mělkého podpovrchového odtr Smoderp 2D, povodi Nucice	erze SMODERF Model je proto rastrových dat. vpravo. Na odł n v manuálu. rostředí QGIS. ž oku a dalších zj	P1D. SMODERP2D je konc integrovaný do používaný kazech jsou poskytnuty ins Z hlediska fyzikálního řešer působů řešení plošného odt	ipován ch GIS :talační ní bude joku.	
4/17/2019	Strazka (m/di)				

Cas [s]

4/17/2019

Input data to rainfall-runoff models – precipitation type influences flood duration/extent

http://rain.fsv.cvut.cz

rain.fsv.cvut.cz/webapp/gisquick/

CTU in Prague - Faculty of Civil Engineering The Department of Landscape Water Conservation

← → C ↑ https://rain1.fsv.cvut.cz:4433/?PROJECT=rain%2Fwebapp

Erosion runoff – increased risk of the residents and the Water quality in the context of the expected climate change (study for territory of the Czech Republic)

https://heis.vuv.cz/data/webmap/datovesady/projekty/eroznismyv/default.asp

EROZNÍ SMYV

EROZNÍ SMYV – ZVÝŠENÉ RIZIKO OHROŽENÍ OBYVATEL A JAKOSTI VODY V SOUVISLOSTI S OČEKÁVANOU ZMĚNOU KLIMATU

Úvod

Stručná anotace projektu

Nejistoty plynoucí z budoucího vývoje klimatu představují z dlouhodobého pohledu významný rizikový faktor, který může nepříznivě ovlivňovat rozvoj sídel a narušovat funkce místní infrastruktury. Jedním z rizik spojených se změnou klimatu může být zvýšená četnost a extremita přívalových srážek. Ty mohou v řadě oblastí České republiky zvýšit ohrožení již dnes erozně náchylných pozemků a v řadě oblastí se mohou v důsledku toho objevit nová rizika, která zde nebyla běžná. Vzhledem k výrazně častějšímu výskytu extrémních situací v posledních dvou desetiletích je tato hrozba reálná a je vhodné se na novou situaci s předstihem připravit.

Přívalové srážky doprovázené erozí půdy a transportem splavenin představují rizikový faktor ohrožující obyvatelstvo, sídelní infrastrukturu, ale i zdroje povrchové vody či významné rekreační lokality. Množství přívalových srážek se změnou klimatu roste a v budoucnu mohou rizika spojená s těmito extrémními jevy ohrožovat významné části území ČR. Hlavním cílem projektu bylo navrhnout koncepční postupy pro hodnocení a klasifikaci rizikových lokalit ohrožených erozí půdy a transportem splavenin s nepříznivými dopady na obyvatelstvo, sídelní infrastrukturu, ale i zdroje povrchové nebo jiné významné prvky a objekty v území. Významným cílem projektu bylo navrhnout koncepční postupy pro hodnocení a klasifikaci rizikových lokalit ohrožených erozí půdy a transportem splavenin s nepříznivými dopady na obyvatelstvo, sídelní infrastrukturu, ale i zdroje povrchové nebo jiné významné prvky a objekty v území. Významným cílem projektu byla také aplikace navržených koncepčních postupů v analýze kritických lokalit na území celé České republiky a prezentace výsledků formou interaktivního programového prostředí s možností jednoduchá simulace vhodných kompenzačních opatření pro současné podmínky a podmínky očekávané změny klimatu.

Práce na projektu probíhaly v období 1.1.2012 až 31.12.2015. Stránky obsahují výsledky a výstupy řešení projektu, které jsou tak k dispozici všem uživatelům.

Datum poslední aktualizace stránky: 5.4.2016

HYDROEKOLOGICKÝ INFORMAČNÍ SYSTÉM VÚV TGM © copyright: Výzkumný ústav vodohodpodáľský T.O.Masaryka, veľejná výzkumná instituce

MINISTERSTVO VNITRA ČESKÉ REPUBLIKY

Calculation of **total inflow** – gives an information about amount of sediment, transported **into/through** urban areas – classification of **THREAT**

Riziko erozního smyvu v současných klimatických podmínkách bez aplikace opatření

Vygenerovat mapu

Vygenerovat mapu pro všechny scénáře

Riziko erozního smyvu v současných klimatických podmínkách bez aplikace opatření

Vygenerovat mapu

Vygenerovat mapu pro všechny scénáře

EROSION LOSSES

EROSION LOSSES - INCREASED THE RISK TO THE POPULATION AND WATER QUALITY IN THE CONTEXT OF ANTICIPATED CLIMATE CHANGE

Detailed information on risk point

Threats to the point erosion washes

ID Risk point Erosion losses	80093
Catchment area of risk point	20.22 has
Share of grassland in the basin Venture Point	09.01%
Share of forest area in the basin Venture Point	13.03%
Share of arable land in the watershed Venture Point	85.61%

Current climatic condition

	object vulnerability	The threat of erosion washes	overall risk
Without the application of measures	very high	medium	very high
Changing crop rotations	very high	low	high
Changing crop rotations and tillage	very high	low	high
permanent grassing	very high	very low	medium
Technical erosion control measures	very high	very low	medium

The prospective climatic condition

	object vulnerability	The threat of erosion washes	overall risk
Without the application of measures	very high	medium	very high
Changing crop rotations	very high	low	high
Changing crop rotations and tillage	very high	low	high
permanent grassing	very high	very low	medium
Technical erosion control measures	very high	very low	medium

Interested LPIS blocks

code LPIS	Acreage [ha]	Culture
772102501/8	7.93	fertile ground
772102501/2	1.73	fertile ground

1. The events are coming even in dry periods

2. measures may work, but have to be "designed"

1. The events are coming even in dry periods

2. measures may work, but have to be "designed"

