Soil carbon loss and sequestration – myths and reality

Walter W. Wenzel
Alex Dellantonio

Department of Forest & Soil Sciences
Rhizosphere Ecology & Biogeochemistry Group
University of Natural Resources & Applied Life Sciences, Vienna
Peter Jordan Straße 82, A-1190 Vienna, Austria
Introduction
Aims and objectives

- Introduction
- Responses of soil carbon to environmental change
- SOC stocks and responses to management
- Evaluation of measures
Global carbon pools and fluxes

Schils et al. (2008)

Principal global carbon pools in Pg (1 Pg = 1 Gt = 1015 g).

- Ocean: 38,000 Pg
- Geologic: 5,000 Pg
- Soil: 1,500 Pg
- Atmosphere: 730 Pg
- Biotic: 500 Pg
Global carbon pools and fluxes

Schematic diagram of carbon cycle, with main pools and flows of the natural global C cycle (in Pg) between the pools.

Schils et al. (2008)
Global carbon pools and fluxes

Climate change affects the soil carbon pool and vice versa changes in soil carbon affect the climate. For these relationships, land use and land management are major factors.

Schils et al. (2008)
Global carbon pools and fluxes

Processes leading to formation and loss of soil carbon

Atmospheric carbon

Net Primary Productivity (NPP)

Living biomass

Litter fall

Decomposition

Litter

Soil carbon

Hydrological transport, incl. erosion

Oceans

Schils et al. (2008)
Responses of soil carbon to environmental change

<table>
<thead>
<tr>
<th>Environmental change</th>
<th>Process response</th>
<th>Soil carbon response</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plant and litter production</td>
<td>Decomposition</td>
<td>Erosion</td>
</tr>
<tr>
<td>Increased CO₂</td>
<td>↑</td>
<td>↓</td>
<td>—</td>
</tr>
<tr>
<td>Increased temperature</td>
<td>↓</td>
<td>↑</td>
<td>—</td>
</tr>
<tr>
<td>Dry spells on mineral soils</td>
<td>↓</td>
<td>↓</td>
<td>—</td>
</tr>
<tr>
<td>Dry spells on organic soils</td>
<td>—</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Heavy rain events</td>
<td>—</td>
<td>—</td>
<td>↑</td>
</tr>
<tr>
<td>Increased nutrient availability</td>
<td>↑</td>
<td>↓</td>
<td>—</td>
</tr>
</tbody>
</table>

Expected responses of soil carbon and the underlying processes to key environmental change factors. (Note: “Uncertainty” refers to the direction of the soil carbon response: uncertainties about magnitudes of change are high throughout.)

Schils et al. (2008)
Responses of soil carbon to environmental change

Schematic diagram of carbon cycle, showing the human perturbation to the flows of C (in Pg) between the pools.

Schils et al. (2008)
SOC stocks and responses

Carbon stocks:
Austria: 1.2-1.4 Pg (1.5%)
Europe: 75.3-79.7 Pg
(Schils et al., 2008)
SOC stocks and responses

Soil organic carbon (SOC) contents in Austria

UBA (2003)
Carbon stocks and responses

Carbon accumulation in a silty clay loam soil at Rothamsted (U.K.) after conversion of arable to permanent grassland

Freibauer et al. (2004)
Jenkinson (1988)
Carbon stocks and responses

- Carbon stocks: grasslands > arable land (Soussana et al., 2004), e.g. 1.6 times (4% vs. 2.5%) greater in permanent pasture compared to cereal cultivation in a Swedish farm system (no changes of cultivation since 1880) (Katterer et al., 2008)

- Conversion from grassland to arable land lowers C stock; conversion back to grassland increases C stock, e.g. by 0.6% C in 32 years in the Swedish study (Katterer et al., 2008)

- Change from arable to cropping may increase C stock by 33 g m\(^{-2}\) y\(^{-1}\) (estimate based on a literature review by Post and Kwon, 2000)

- Soils with initially high C content are more susceptible to loss upon land use change or certain management practices than low C soils (Katterer et al., 2004)
Carbon stocks and responses

- Complex crop rotations maintain higher C stocks than monocultures (Morari et al., 2006) but not in every case (Persson et al., 2008)
- Enhancing crop rotation complexity (monoculture to continuous rotation; crop fallow to rotation; increasing the number of crops in a rotation system) may increase C stocks by 20 ± 12 g C m$^{-2}$ y$^{-1}$ (comprehensive literature data analysis of 67 long-term experiments by West and Post, 2002)
- Changing from conventional to no tillage may sequester 57 ± 14 g C m$^{-2}$ y$^{-1}$ (except wheat – fallow systems: no change) (West and Post, 2002)
- Carbon peaks are encountered after 5-10 years, new equilibrium is typically approached after 15-20 (100) years (Smith et al., 1997a,b)
SOC stocks and responses

- **Arable soils**
 - European scale estimate suggests arable soils to be a net source of $92 \text{ g C m}^{-2} \text{ y}^{-1}$ (Janssens et al., 2003)
 - The complexity of interacting factors makes it difficult to obtain reliable estimates of carbon fluxes from/to arable soils

- **Grassland soils**
 - Under current management conditions, grasslands are considered net sinks of C (Jones and Donelly, 2004)
 - Measurements suggest sequestration rates of 45-80 g C m$^{-2}$ y$^{-1}$ with an estimate for Europe of 76 g C m$^{-2}$ y$^{-1}$ (Janssens et al., 2003)
SOC stocks and responses

- Grassland soils (continued)
 - Appropriate management (irrigation, organic and mineral fertilisers, grazing) may increase C stocks by 30-35 g C m\(^{-2}\) y\(^{-1}\) (Conant et al., 2001)

- Forst soils
 - Forest biomass inventories combined with modelling suggests carbon sequestration in the range of 7-12 g C m\(^{-2}\) y\(^{-1}\) by Swedish and Finnish forest soils (de Wit et al., 2006; Liski et al., 2006; Agren et al., 2007)
 - Soil monitoring in three Swedish forest systems suggested C sequestration of 18 g C m\(^{-2}\) y\(^{-1}\) (Berg et al., 2007)
SOC stocks and responses

Estimated changes in soil carbon pool under different land uses in Europe. Positive figures mean increase in the pool, negative ones decrease; sd stands for standard deviation

<table>
<thead>
<tr>
<th>Land use</th>
<th>Change in soil carbon pool (Tg year$^{-1}$)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasslands</td>
<td>+1 to +45</td>
<td>Smith et al., 2005</td>
</tr>
<tr>
<td></td>
<td>+101 (sd 133)</td>
<td>Janssens et al., 2003</td>
</tr>
<tr>
<td>Croplands</td>
<td>-39 to +10</td>
<td>Smith et al., 2005</td>
</tr>
<tr>
<td></td>
<td>-300 (sd 186)</td>
<td>Janssens et al., 2003</td>
</tr>
<tr>
<td>Forest</td>
<td>+17 to +39</td>
<td>Liski et al., 2002</td>
</tr>
</tbody>
</table>

European soils are estimated to be a sink for 1-100 million tons of CO$_2$ per year
SOC stocks and responses

Conceptual model of soil organic carbon (SOC) changes due to cultivation and land use modifications in agricultural soils

Louwagie et al. (2009)
SOC stocks and responses

Critical threshold values for soil organic carbon (SOC)

Louwagie et al. (2009)
SOC stocks and responses

Risk and probability zones for soil organic carbon (SOC) loss (indicated by horizontal lines)

Louwagie et al. (2009)
SOC stocks and responses

Risk and probability zones for soil organic carbon (SOC) loss (indicated by horizontal lines)

Louwagie et al. (2009)
Soil threats and state
SOC stocks and responses

Minimum soil organic carbon (SOC) contents in Europe

Louwagie et al. (2009)
SOC stocks and responses

Maximum soil organic carbon (SOC) contents in Europe

Louwagie et al. (2009)
SOC stocks and responses

Actual soil organic carbon (SOC) contents in Europe

Louwagie et al. (2009)
SOC stocks and responses

Potential loss of soil organic carbon (SOC) in Europe

Louwagie et al. (2009)
SOC stocks and responses

Potential gain of soil organic carbon (SOC) in Europe

Louwagie et al. (2009)
SOC stocks and responses

Probability zones of soil organic carbon (SOC) gain in Europe

Louwagie et al. (2009)
SOC stocks and responses

Estimated annual carbon fluxes from/to managed soils in EU-15 in the first Kyoto commitment period 2008-2012 for the business-as-usual scenario. Positive signs refer to soil as carbon sink, negative signs to soil as carbon source; error bars designate standard deviations.

Overall, European soils are estimated to be a source for millions of tons of CO$_2$ per year.

Note: Uncertainty estimates include only uncertainty of soil carbon stocks but not those of inputs.

Vleeshouwers & Verhagen (2002)
Freibauer et al. (2004)
SOC stocks and responses

Simulated carbon fluxes to European cropland soils in the commitment period 2008-2012 of the Kyoto Protocol

Vleeshouwers & Verhagen (2002)
Freibauer et al. (2004)
Simulated soil carbon fluxes to European grassland soils in the commitment period 2008-2012 of the Kyoto Protocol

Vleeshouwers & Verhagen (2002)
Freibauer et al. (2004)
SOC stocks and responses

Annual relative decomposition rates of organic matter in European soils

- High decomposition in regions where high temperatures coincide with moist conditions in summer
- Low decomposition in cold and wet climatic conditions

Vleeshouwers & Verhagen (2002)
Freibauer et al. (2004)
Evaluation of measures

Promising measures for enhancing soil carbon sequestration

Weiseke et al. (2007) suggested the following measures for enhancing soil carbon sequestration, along with their estimated sequestration potential per unit area (in t CO₂-eq. ha⁻¹ a⁻¹) and emission reduction potential during the first commitment period (EU15) (in Mt CO₂-eq. a⁻¹).

<table>
<thead>
<tr>
<th>Measure</th>
<th>Sequestration potential per unit area [t CO₂-eq. ha⁻¹ a⁻¹]</th>
<th>Emission reduction potential during first commitment period (EU15) [Mt CO₂-eq. a⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promotion of organic input</td>
<td>1-3</td>
<td>20</td>
</tr>
<tr>
<td>Permanent revegetation of set-aside (increased soil carbon; part of afforestation)</td>
<td>2-7</td>
<td>15</td>
</tr>
<tr>
<td>Biofuel production on set-aside (increased soil carbon)</td>
<td>2-7</td>
<td>15</td>
</tr>
<tr>
<td>Promotion of organic farming</td>
<td>>0-2</td>
<td>14</td>
</tr>
<tr>
<td>Promotion of permanently shallow water table on peatland</td>
<td>5-15</td>
<td>15</td>
</tr>
<tr>
<td>Zero and/or conservation tillage</td>
<td>>0-3</td>
<td><9</td>
</tr>
</tbody>
</table>

Conversion factor CO₂ : C = 3.67
Evaluation of measures

Promising measures for enhancing soil carbon sequestration

Realistic C sequestration potential in EU-15 during first commitment period (Mt C y\(^{-1}\)) Freibauer et al. (2004)

Cropland management
- Promote organic inputs (crop residues, cover crops, FYM, compost, sewage sludge)
- Organic farming
- Conservation / zero tillage

Grassland management
- Maintain permanent shallow water table and rewett peat soils

Permanent vegetation cover on set-aside land
- Perennial grasses
- Woody bio-energy crops (afforestation, short rotation coppice plantations)

Total: 16-19 Mt C y\(^{-1}\)
Evaluation of measures

Potential pitfalls of carbon sequestration policies

Cropland management
- Promote organic inputs
 - More N inputs – more N$_2$O emissions
- Organic farming

Grassland management
- Reduced conditions – more CH$_4$ emissions

Permanent vegetation cover on set-aside land
- More animals – more CH$_4$ emissions
- Woody bio-energy crops (afforestation, short rotation coppice plantations)

Return to previous management (quick loss of C)
- Poorer aeration – more N$_2$O emissions
 (1.46 kg N ha $^{-1}$ – wives out 50-60% of C sequestration)
Evaluation of measures

Effects of N fertilization on organic carbon stocks (t ha$^{-1}$) in topsoil (0–25 cm) after a period of 36 years at the experimental sites (27 replicates)

<table>
<thead>
<tr>
<th>Sites</th>
<th>Treatments ↓</th>
<th>Alpenvorland</th>
<th>Waldviertel</th>
<th>Marchfeld</th>
</tr>
</thead>
<tbody>
<tr>
<td>No N</td>
<td></td>
<td>59.3</td>
<td>37.7</td>
<td>49.3</td>
</tr>
<tr>
<td>Medium N</td>
<td></td>
<td>60.3</td>
<td>37.1</td>
<td>50.3</td>
</tr>
<tr>
<td>Optimal N</td>
<td></td>
<td>61.3</td>
<td>38.3</td>
<td>53.1*</td>
</tr>
<tr>
<td>Excessive N</td>
<td></td>
<td>60.1</td>
<td>38.0</td>
<td>50.4</td>
</tr>
<tr>
<td>$LSD (P < 0.05)$</td>
<td></td>
<td>3.7</td>
<td>2.6</td>
<td>3.7</td>
</tr>
</tbody>
</table>
Evaluation of measures

Influence of increasing NPK-fertilization on crop yields (t ha\(^{-1}\)) of selected years at the experimental sites (3 replicates)

<table>
<thead>
<tr>
<th>Sites ⇒ Treatments ⇒</th>
<th>Waldviertel</th>
<th>Marchfeld</th>
<th>Alpenvorland</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Barley</td>
<td>Rye</td>
<td>Oats</td>
</tr>
<tr>
<td>No NPK</td>
<td>2.56</td>
<td>2.90</td>
<td>4.68</td>
</tr>
<tr>
<td>Medium NPK</td>
<td>3.25</td>
<td>4.07</td>
<td>5.96</td>
</tr>
<tr>
<td>Optimal NPK</td>
<td>3.84</td>
<td>5.43</td>
<td>6.27</td>
</tr>
<tr>
<td>Excessive NPK</td>
<td>3.83</td>
<td>5.57</td>
<td>6.54</td>
</tr>
<tr>
<td>LSD (P<0.05)</td>
<td>1.21</td>
<td>1.21</td>
<td>1.01</td>
</tr>
</tbody>
</table>
Evaluation of measures

Effects of additional farm yard manure application (10 t ha\(^{-1}\) y\(^{-1}\)) combined with increased N fertilization on increase of SOC content (t ha\(^{-1}\)) and on absolute SOC level (t ha\(^{-1}\)) in topsoil (0–25 cm) after a period of 21 years

<table>
<thead>
<tr>
<th>Sites ⇒</th>
<th>Alpenvorland</th>
<th>Waldviertel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments ⇒</td>
<td>Increase due to FYM</td>
<td>SOC-level absolute</td>
</tr>
<tr>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>No N</td>
<td>+3.7</td>
<td>63.0</td>
</tr>
<tr>
<td>Medium N</td>
<td>+3.4</td>
<td>65.1</td>
</tr>
<tr>
<td>Optimal N</td>
<td>+3.3</td>
<td>64.6</td>
</tr>
<tr>
<td>Excessive N</td>
<td>+3.1</td>
<td>63.2</td>
</tr>
<tr>
<td>LSD ((P < 0.05))</td>
<td>3.7</td>
<td>2.6</td>
</tr>
</tbody>
</table>
Evaluation of measures

Influence of additional FYM-application (10 t ha\(^{-1}\) y\(^{-1}\)) combined with increased NPK fertilization on yield increase (t ha\(^{-1}\)) (3 replicates).

<table>
<thead>
<tr>
<th>Sites(\Rightarrow) Treatments(\Rightarrow)</th>
<th>Waldviertel</th>
<th>Alpenvorland</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Barley</td>
<td>Rye</td>
</tr>
<tr>
<td>No NPK</td>
<td>+ 0.29</td>
<td>+ 0.66</td>
</tr>
<tr>
<td>Medium NPK</td>
<td>+ 0.46</td>
<td>+ 0.30</td>
</tr>
<tr>
<td>Optimal NPK</td>
<td>+ 0.23</td>
<td>+ 0.32</td>
</tr>
<tr>
<td>Excessive NPK</td>
<td>+ 0.36</td>
<td>+ 0.06</td>
</tr>
<tr>
<td>(LSD (P < 0.05))</td>
<td>1.21</td>
<td>1.21</td>
</tr>
</tbody>
</table>
Evaluation of measures

Effect of incorporation or removal of crop residues on SOC stock (t ha\(^{-1}\)) after a period of 17 years (16 replicates).

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Marchfeld</th>
<th>Waldviertel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal of crop residues</td>
<td>58.0</td>
<td>34.1</td>
</tr>
<tr>
<td>Incorporation of crop residues</td>
<td>63.2</td>
<td>37.5</td>
</tr>
<tr>
<td>(LSD (P<0.05))</td>
<td>2.9</td>
<td>4.1</td>
</tr>
</tbody>
</table>
Evaluation of measures

Effects of different tillage treatment on SOC-stock (t ha\(^{-1}\)) in topsoil layers at Marchfeld after a period of 10 years (3 replicates).

Dersch & Böhm (2001)
Evaluation of measures

- Implementing carbon sequestration in agricultural policy
 - Stability of agricultural policy / incentives for long periods (>20 years)
 - Permanency of measures (otherwise quick release of CO$_2$ and N$_2$O)
 - Efficiency of carbon sequestration depends on soil (texture, initial C level) and climatic conditions (e.g., almost no C sequestration in sandy soils after 100 y)
 - Attention must be paid to unwanted environmental side effects such as the potential of enhanced N$_2$O or CH$_4$ emissions (net accounting required)
 - Measures should consider existing practices and incentive systems (e.g. CAP, ÖPUL) and build on them rather than take independent approaches
 - High uncertainties of potential C sequestration estimates
 - “Saturation” of carbon pools limits efficient sequestration to about 20 years
 - No tools to measure and monitor stock changes at short time scales (e.g. first commitment period of Kyoto protocol)
Evaluation of measures

- Implementing carbon sequestration in agricultural policy
 - Current CAP and ÖPUL likely help to maintain carbon pools
 - Legislation and incentives to promote production of feed stocks for bio-energy in arable systems are the most likely to counteract carbon sequestration and other soil protection (e.g. erosion) policies
 - It may be worth to check those measures of ÖPUL that are likely to support carbon sequestration policy in term of acceptance and actual implementation by farmers and to put efforts into increased participation in these measures
 - Information / education
 - Direct the measures to situations where they are most effective
 - Increase incentives for specific, effective, yet only little implemented measures (maybe compensate costs by reducing other incentives)
 - Measures already widely practiced (e.g. manure application, incorporation of crop residues) have little potential to further enhance carbon sequestration